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The Elephant in the Room
 Most real world complex systems are defined exactly by multiscale

couplings and display some form of dependence, in  physiology of the 
human body (e.g. brain signals, respiration/heart, etc.), or in monitoring 
of complex engineering systems (e.g. power plant, electric grid, web,etc). 

 But dependence and causation lack universally accepted definitions.

 On the other hand, independence and non-causation (or equivalently 
diti l i d d ) i l d fi d i th ti l tconditional independence) are precisely defined in mathematical terms. 

 Define: Dependence as absence of independence. 

 However, these concepts are not always reciprocal of each other, and 
they bear very different understanding and usage in the context of 
specific applicationsspecific applications.



Statistical Definitions
 What is statistical independence?

)()(),( BYPAXPBYAXP ∈∈=∈∈

 What is conditional independence?
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 What is statistical dependence?
)()(),( BYPAXPBYAXP ∈∈≠∈∈

 What is conditional dependence?  
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A Practical Issue
 How to translate statistical criteria on random variables to realizations 

(estimators)? 

Obviously we would like to use the most powerful statistical measure, but 
unfortunately this is usually the one that has the most difficult estimator 
(no free lunch!).

 Parametric versus non parametric estimators

 Estimators should preserve the properties of the statistical criterion

 Hopefully no free parameters, and well established statistical tests 

 Some other lesser problems are the number of variables, abstractness, 
data types and scalability/computational complexity.



Approaches to Quantify Dependence

Design an Directly explore the 

Traditional Our Approach

Design an 
Appropriate  

Measure

y p
concept of 

dependence from 
realizations

Find a Good Estimator Generalized Measure of 
Association (GMA)

• GMA generalizes the concept of association to arbitrary metric spaces 
• GMA is bounded, parameter-free, easy to compute, and asymmetric in nature.



State of the Art
 Independence

 Very well studied, many measures exist. Short summary

 Conditional independence

 Very well studied, but not many measures. Not coveredy , y

 Dependence

 Use of correlation and mutual information is dominant. We explore newUse of correlation and mutual information is dominant. We explore new 
understanding, i.e. Generalized Association

 Conditional dependence  

 Not well studied. Extend Generalized Association



Concept of Independent  Events 
 Independence was applied during many years in a vague

and intuitive sense on event spaces.

 The rule of multiplication of probabilities for independent 
events is an attempt to formalize the concept of independence and to 
build a calculus around it (but they are NOT the same)

Emile Borel

build a calculus around it (but they are NOT the same). 
 Borel in 1909 claimed that binary digits (or Rademacher functions) were 

independent. This launched the modern theory of probability, with the p y p y,
concept of measurable functions (the random variables) and solved this 
problem for (most of) us. 
I d d i i th f b i f th d h f Independence is in the core fabric of measure theory and hence of 
probability, and explains why the concept is so clear and a huge 
simplification that is exploited throughout statistics. 

Kac M., Statistical Independence in Probability, Analysis and Number Theory
Loeve , M., Probability Theory



Independence in Machine Learning
 Independent Component Analysis (ICA) has been one of the most 

visible  applications of independence in Machine Learning and Signal 
P iProcessing. 

Sources P and W
Unknown A=W-1

Assume sources 
Independent,

Mixing linear

A=W 1

 The early work concentrated on using surrogate costs for independence 

Mixing linear 

dim R > dim P

y g g p
(contrast functions) such as Kurtosis, Negentropy, etc. 

 We proposed Information Theoretic Learning (ITL) while Bach and 
Jordan proposed kernel ICA. They both exploit directly independence. 



Kernel ICA
 The idea is to use the maximal correlation defined in the space of 

functions F as 
))()(cov( ff

and estimate it using projections in a Reproducing Kernel Hilbert Space 
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which coincides with the first canonical correlation in the RKHS, followed 
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by a maximization step.  

 The method is very principled, complexity is still reasonable O(N2) and 
i i i hi h f l di iprecision is very high for low dimensions.

 There are two free parameters: the regularization and the kernel size in 
the RKHS mappingthe RKHS mapping



RKHS in Probability Theory
 Loeve noted the existence of a RKHS representation for time series in 

1948 and Parzen presented a systematic treatment in 1959.

E l P h ld b dit d f i ti t th i t f Emanuel Parzen should be credited for pointing out the importance of 
RKHS to probability theory

“One reason for the central role of RKHS is that a basis tool in the statisticalOne reason for the central role of RKHS is that a basis tool in the statistical 
theory of stochastic processes is the theory of equivalence and 
singularity of normal measures, and this theory seems to be most 
simply expressed in terms of RKHS”. Parzen (1970) Manny Parzen

Michel Loeve Current work goes by the name 
fof statistical embeddings



ITL RKHS
 In information theoretic learning (ITL) we defined a RKHS

induced by a positive definite function called the cross 
information potential (CIP) as = dzzfzfffv )()()(information potential (CIP) as

which is basically the inner product of two pdfs ( in L2). 

 Notice that this RKHS follows Parzen’s idea and it is different from the

= dzzfzfffv YXYX )()(),(

 Notice that this RKHS follows Parzens idea and it is different from the 
work of Bach and Jordan. In this space the distance D between two 
pdfs can be estimated by 

 Notice that D = 0 iff almost everywhere. 

),(),(2
YXYXYX ffffvffD −−=
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 Therefore the problem of independence can be framed in the ITL RKHS 
by making                                           (which we called quadratic mutual 
information (QMI)) and minimizing D

YXYXYX fffandff ==

information (QMI)) and minimizing D. 



ITL RKHS
 The straight estimator of the CIP using Parzen windows is O(N3)
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(one free parameter) but there are faster estimators using the fast 
Gauss transform O(N2) and the incomplete Cholesky decomposition
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Gauss transform O(N2) and the incomplete Cholesky decomposition. 

 The CIP can be generalized as

  d dffff )()()()( κ

where the kernel is a symmetric strictly positive definite function (when 
the kernel defaults to a delta function we get the CIP) This gives rise to

 = dxdyyfxfyxffv YXYXg )()(),(),( κ ||1),( yxyx −−=κ

the kernel defaults to a delta function we get the CIP). This gives rise to 
both an unifying concept of all quadratic measures of independence as 
well as new kernels that do not have any free parameter (but data 
requires normalization).      



ICA: A Mature Field



Concept of Dependent  Events 
 Dependence is coupling in the joint space of random variables. 
 The term dependence appears in contexts such as “X is highly 

dependent on Y” or “Z is more dependent on X than on Y”. 
 We infer one of three things: 

1. the random variables are not independent,1. the random variables are not independent, 
2. the random variables are correlated, 
3. the random variables share some information.

 NONE of these three interpretations explore the dependence concept  
in its entirety. 
 Not independent does not quantify the degree of dependence. 
 Correlation does this, but only quantifies linear dependence over the reals
 Mutual Information is probably appropriate for discrete r.v., but it becomes 

obscure for other data types and it is very difficult to estimate. 



Correlation – Pearson
 Pearson’s correlation is defined as 

Karl Pearson
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 It can be estimated as:
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 Intuitive definition for both r.v. and estimators



Mutual Information

 Mutual Information
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 Conditional Mutual Information Claude Shannon
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 Information theoretical measures of dependence quantify the 
distance in probability spaces between the joint and the 
product of the marginals.

 In contrast to the linear correlation coefficient, MI is sensitive 
to dependences that do not manifest themselves in the 
covariance.covariance.



Mutual Information - Estimation
 MI is not easy to estimate for real variables! It is a fundamental 

problem since the Radon-Nicodym derivative is ill-posed. 

 Estimators are normally designed to be consistent, but their 
small sample behavior is unknown so it is unclear what they are 
really estimating in the context of dependence or independencereally estimating in the context of dependence or independence. 

 Most approaches use Parzen estimators to evaluate MI. But 
unlike the measure the estimated MI between two randomunlike the measure, the estimated MI between two random 
variables is never invariant to one-to-one transformations.

 Alternatively, mutual information can be estimated from k-y,
nearest neighbor statistics.



Measures of Dependence -Survey
 Many extensions to the concepts of correlation and mutual 

information as measures of dependence.

 Renyi’s has defined dependence by a set of properties that can 
be applied more generally. 

 Copulas are a very interesting and potentially useful concept

 Generalized correlation can be defined with kernel methodsGeneralized correlation can be defined with kernel methods

 Measures of Association
 Have a clear meaning in terms of both realization and r. v. and simpleHave a clear meaning in terms of  both realization and r. v. and simple 

estimators, but they are limited to real numbers. 



Measures of Dependence
Functional DefinitionFunctional Definition

Alfred RenyiAlfred Renyi

Very useful framework Maximal correlation obeys all theseVery useful framework.  Maximal correlation obeys all these 
properties 



Measures of Dependence
Sklar -Copula
 This is a very important concept answering the simple     ric rank-

question: how to create all possible joint pdfs when 
the marginals f(x) and g(y) are known?

Sklar -Copula 

the marginals f(x) and g(y) are known?

 Copula is exactly defined as the operator C(.,.) from [0,1]x 
[0,1]  [0,1] that makes C (f(x),g(y)) a bona fide pdf. 

Abe Sklar

 So copula is intrinsically related to measures of dependence between 
r.v. and separates it from the marginal structure. 

 It has been used in statistics to create multivariate statistical models 
from known marginals and provide estimates of joint evolution. 

 Most work has been done with parametric copulas (which may ( y
produce dangerous bias…..)

 Not well known in engineering or machine learning. 



Generalized Correlation
 Correlation only quantifies similarity fully if the  random 

d i bl G i di t ib t drandom variables are Gaussian distributed. 

 Use the kernel framework to define a new         function 
function that measures similarity but it is not restricted tofunction that measures similarity but it is not restricted to 
second order statistics. 

 Define generalized correlation asDefine generalized correlation as
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which is a valid function for positive definite kernels in

 Still easy to understand from realizations 
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Generalized CorrelationGeneralized Correlation
 Correlation is obtained when xyyx =),(κ

 Let us use instead a shift invariant kernel like the the the
the Gaussian

)(),( yxGyx −=κ
 We have defined correntropy as 
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Its estimator is trivial (empirical mean), but has a free 
parameter
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Correntropy:
Dependence measure
Define centered correntropy
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Define correntropy coefficient
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Define parametric correntropy with  

Define parametric centered correntropy 0≠∈ aRba
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Define parametric centered correntropy

Define Parametric Correntropy Coefficient

0, ≠∈ aRba
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Rao M., Xu J., Seth S., Chen Y., Tagare M., Principe J.,

“Correntropy Dependence Measure”, Signal Processing 2010.
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Correntropy:
Dependence Measure

Theorem 1: Given two random variables X and Y: the parametricTheorem  1: Given two random variables X and Y:  the parametric 
centered correntropy Ua,b(X, Y )=0 for all a, b in R if and only if X 
and Y are independent. 

Th 2 Gi t d i bl X d Y th t iTheorem 2: Given two random variables X and Y the parametric 
correntropy coefficient ηa,b(X, Y )=1 for certain a = a0 and
b = b0 if and only if Y = a0X + b0.

Definition: Given two r.v. X and Y
Correntropy Dependence Measure 
is defined as

0
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Measures of Association 
Spearman ρ
 Relaxes correlation on values to ranks

 Non-parametric rank-based measure of the degree

Spearman ρ

Non parametric rank based measure of the degree
of association between two variables.

 Defined as (in a no-ties situation):
Charles SpearmanCharles Spearman
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where  di = xi-yi represents the difference between the ranks of the two 

observations X and Yobservations Xi and Yi.

 More robust to outliers, but needs to estimate ranks which is O(NlogN)



Measures of Association
Kendall τ
 Non-parametric rank-based coefficient that measures

correlation between ordinal variables.

Kendall τ

 Defined as
Maurice Kendall
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−=

NN
NN nccτ

Where Nc refers to the number of concordant pairs i.e. cases verifying: 
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And Nnc refers to the number of non-concordant pairs i.e. cases verifying:
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 Value increases from -1 to +1 as agreement increased between the 
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ranking.



Generalized Association (GMA) 
 The beauty of the measures of association is that they are well 

understood in both the random variables and their realizations. Since 
engineers and computer scientists work with data, having clear (and 
hopefully easy) estimators for realizations is an asset. 

 We developed a novel rank-based measure of dependence capable of 
capturing nonlinear statistical structure in abstract (metric) spaces 

ll d G li d M f A i ti (GMA)called Generalized Measure of Association (GMA). 

 This route still preserves statistical meaning but proofs of properties p g p p p
and convergence become more difficult (ongoing work).  



GMA Definition
Definition

 Given two random variables (X Y) Y is associated with X if Given two random variables (X,Y), Y is associated with X if 
close realization pairs of Y, i.e. {yi,yj} are associated with close 
realization pairs of X, i.e. {xi,xj}, where closeness is defined in 
terms of the respective metrics of the spaces where the r.v. lie. p p

 In other words, if two realizations {xi,xj} are close in X, then the 
corresponding realizations {yi,yj}  are close in Y.

 This follows the spirit of Spearman and Kendall but extends the 
concept to any metric space because of the pairs. 

 The algorithm requires only estimation of ranks over pairs which 
is O(N2logN)



GMA Properties
 GMA is defined between any two r. v. that take values in 

two distinct metric spaces.

 The proposed measure is asymmetric.

 If X ⊥ Y (independent) then DG≈ 0 5 and if X = Y thenIf X ⊥ Y (independent) then DG  0.5, and if X  Y then 
DG= 1 (necessary conditions). At this point, we do not 
have a formal proof whether these conditions are also 
sufficient.sufficient.

 The proposed measure is invariant to any isometric 
transformation of X and Y since it is solely based on y
pairwise distances.

 The GMA estimator is parameter free. 



GMA Understanding
 Consider the ranks ri as a r.v. R, then the distribution of R will 

quantify dependence. In fact, if the ranks are broadly q y p y
distributed then dependence is small, while skewness of R will 
mean more dependence. 
 If ranks are uniform distributed, variables are independent, and 

GMA=0.5

 If ranks are delta function distributed then variables are strictly If ranks are delta function distributed, then variables are strictly 
dependent and GMA=1. 

 This assumes that ranks are never the same between pairs,This assumes that ranks are never the same between pairs, 
which is not the case for categorical variables. We modified 
the procedure to work with a probabilistic rank 



GMA Understanding
 The estimator for GMA can be obtained very easily: estimate 

the CDF of R and normalize it by n-1 (area under the curve),   y ( )
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GMA Algorithm- Stochastic Rank 
 For two time series              , compute GMA as the area under 

the CDF of the ranks  ri of  yj* where j* corresponds to the 

N
ttt yx 1},{ =

i yj j p
index of the closest element to each time series element  xi :

Algorithmic complexity is still O(N2logN)



How to measure cause and effect 
i i ?in neuroscience?
 There are no well-defined estimators of mutual information in 

non-Euclidean spaces

 This is particularly critical in neuroscience because neurons 
produce spike trains that can be modeled as point processes.

 How to measure dependence between stimulus and neural p
response?

 For manipulations in experimental neuroscience it is very o a pu at o s e pe e ta eu osc e ce t s e y
important to related the dependence between stimulus and 
neural response. But stimulus normally are controlled by 
variables in L2, while neurons produce spike trains…. 



Dependence of neural response on 
t ti l tisomatosensory stimulation

Thalamus Somatosensory cortex

Micro-stimulationTactile Stimulation
 We control the amplitude and duration of electrical stimulation: 19 distinct pairs of pulse 

duration and current amplitude were applied, with 140 responses from each pair 
randomly permuted throughout the recording. We analyze 480 ms of spiking data after 
stimulus onset on 14 cortical channels after each stimulus onset for analysis.



Dependence of neural response on 
t ti l tisomatosensory stimulation

 To measure the differences in amplitude and duration use L2 norm. 

 To measure the spike train dynamics we use the Victor Purpura
distance, which is a function of a temporal precision parameter q. 
There are 100 bootstrap trials with 40 trials out of 140 for eachThere are 100 bootstrap trials with 40 trials, out of 140, for each 
stimulation setting to help set q. 

95 percentile of
surrogates



GMA Results
Marginal duration

Marginal amplitude

power

Red 50%
black 95%

Joint 
dependence



Quantifying Cognitive Brain Processes
 Most visual information processed by the primary visual 

cortex can be identified by category (table, pen, insect, bird)
This is however different for Faces

 We always recognize a face as someone’s face. Besides, this 
i i ll i d ith th f t likuniqueness is usually recognized with other factors like 

condition and expression. 

W ifi ll i d i d i ff i We are specifically interested in studying affective 
perception to identify the brain circuits and cognitive 
processes involved in recognizing facial and non facialprocesses involved in recognizing facial and non facial 
structures. Perhaps we can predict when the subject is 
looking at a face through the EEG like a cognitive BCI. 



ssVEPs for Cognitive Neuroscience
 In this work, we flash the full image with affective content and study how the 

whole brain processes  the Steady-State Visually Evoked Potentials ssVEPs
information (i e discriminate between two types of visual stimuli)information (i.e. discriminate between two types of visual stimuli). 

 Stimuli consist of two types of images displayed on a 17’’ monitor 
flickering at a frequency of 17 5 ± 0 20 Hz and matched for contrastflickering at a frequency of 17.5 ± 0.20 Hz and matched for contrast

 First condition shows a human face (Face) and the second shows a 
Gabor patch i e a pattern of stripes created from face (Gabor)Gabor patch, i.e. a pattern of stripes created from face (Gabor)



Experimental Setting
 Electrode recordings are collected from a 129 Hydro-Cell Geodesic 

Sensor Net (HCGSN) montage

 Sampling rate used is 1000 Hz. 15 trials are performed for each 
condition. Luminance is set to vary from 0 to 9.7 cd.m-2



Preprocessing  
 The subject was instructed not to blink and keep head movements as 

minimal as possible. Still, the recorded EEG signal remains noisy and 
t i t d b i t t tif t l d ti (contaminated by important artifacts: volume conduction (use source 

models), line noise (notch filters).

A BP filt t t t th 17 5 H t Th d i A BP filter necessary to extract the 17.5 Hz component. The design 
of this filter is crucial not to distort the dependence. Q=1 is the best!!!!



Statistical tests
 We use the two sample Kolmogorov-Smirnov (KS) test to compare 

the vector distributions.

 The KS test is a non-parametric test to compare two sample vectors, 
where the test statistic is:  

)()(
1221 , xFxFxamKS
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are sample vectors

are empirical PDFs
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 We apply the KS test at an α-level of 0.1 on dependence measures 
vectors belonging to Face and Gabor patch (Gabor). 





Testing
 Same settings are used to compare the results of correlation, mutual 

information and GMA:
 Pairwise dependence to channel 72

 Embedding dimension set to 8  (25 samples shift for correlation)

 Time windows of 114 ms or 114 samples. This corresponds to two 
cycles of Fs / Fo

 Dependence is visualized in sensor space as a function of amplitude



Results- Abs Corr

FACE

GABOR



Results- MI

FACE

GABOR



Results- GMA

FACE

GABOR



Results- Comparison



Results- Empiric CDFs



Results- K statistic

Power Spectrum



Conclusion
 This presentation addressed the issue of statistical dependence.

W t d t h i th i t f d t di We opted to emphasize the importance of understanding 
dependence when working with the realizations.  So decided to 
define a new measure of association that generalizes the ones in the 
literature. 

 The estimator for GMA has no free parameters and it is easy to 
predict how the measure is handling the data. It can also be 
generalized to conditional association, and the results are 
comparable with others in the literature but are easier to computecomparable with others in the literature, but are easier to compute. 

 No proof that GMA is a measure of dependence in known. 



Conclusion
 The measure works well in practice, and we are using it to quantify 

dependence amongst brain areas using the EEG. A filter with a p g g
quality factor falling in the range [0.7-1.5] is suitable for maximizing 
the KS statistical difference between the dependence vectors 
distributions of Face and Gabordistributions of Face and Gabor.

 Results show consistency in the brain regions active, over cycles of 
114 ms.

 More activity is visible in the right hemisphere of the brain for the 
Face case, which might be explained by the activity of the right 
fusiform gyrus and the amygdala.

 GMA showed more discriminability for the two stimuli than Correlation 
d M t l I f tiand Mutual Information.


